112 research outputs found

    Majority Rule: better patching via Self-Consistency

    Full text link
    Large Language models (LLMs) can be induced to solve non-trivial problems with "few-shot" prompts including illustrative problem-solution examples. Now if the few-shots also include "chain of thought" (CoT) explanations, which are of the form problem-explanation-solution, LLMs will generate a "explained" solution, and perform even better. Recently an exciting, substantially better technique, self-consistency [1] (S-C) has emerged, based on the intuition that there are many plausible explanations for the right solution; when the LLM is sampled repeatedly to generate a pool of explanation-solution pairs, for a given problem, the most frequently occurring solutions in the pool (ignoring the explanations) tend to be even more likely to be correct! Unfortunately, the use of this highly-performant S-C (or even CoT) approach in software engineering settings is hampered by the lack of explanations; most software datasets lack explanations. In this paper, we describe an application of the S-C approach to program repair, using the commit log on the fix as the explanation, only in the illustrative few-shots. We achieve state-of-the art results, beating previous approaches to prompting-based program repair, on the MODIT dataset; we also find evidence suggesting that the correct commit messages are helping the LLM learn to produce better patches

    Improving Few-Shot Prompts with Relevant Static Analysis Products

    Full text link
    Large Language Models (LLM) are a new class of computation engines, "programmed" via prompt engineering. We are still learning how to best "program" these LLMs to help developers. We start with the intuition that developers tend to consciously and unconsciously have a collection of semantics facts in mind when working on coding tasks. Mostly these are shallow, simple facts arising from a quick read. For a function, examples of facts might include parameter and local variable names, return expressions, simple pre- and post-conditions, and basic control and data flow, etc. One might assume that the powerful multi-layer architecture of transformer-style LLMs makes them inherently capable of doing this simple level of "code analysis" and extracting such information, implicitly, while processing code: but are they, really? If they aren't, could explicitly adding this information help? Our goal here is to investigate this question, using the code summarization task and evaluate whether automatically augmenting an LLM's prompt with semantic facts explicitly, actually helps. Prior work shows that LLM performance on code summarization benefits from few-shot samples drawn either from the same-project or from examples found via information retrieval methods (such as BM25). While summarization performance has steadily increased since the early days, there is still room for improvement: LLM performance on code summarization still lags its performance on natural-language tasks like translation and text summarization. We find that adding semantic facts actually does help! This approach improves performance in several different settings suggested by prior work, including for two different Large Language Models. In most cases, improvement nears or exceeds 2 BLEU; for the PHP language in the challenging CodeSearchNet dataset, this augmentation actually yields performance surpassing 30 BLEU

    Mining Semantic Loop Idioms

    Get PDF

    A Survey of Machine Learning for Big Code and Naturalness

    Get PDF
    Research at the intersection of machine learning, programming languages, and software engineering has recently taken important steps in proposing learnable probabilistic models of source code that exploit code's abundance of patterns. In this article, we survey this work. We contrast programming languages against natural languages and discuss how these similarities and differences drive the design of probabilistic models. We present a taxonomy based on the underlying design principles of each model and use it to navigate the literature. Then, we review how researchers have adapted these models to application areas and discuss cross-cutting and application-specific challenges and opportunities.Comment: Website accompanying this survey paper can be found at https://ml4code.github.i
    • …
    corecore